
Lecture 1/2 — Classical Function Spaces

Spaces of Continuous Functions

Lemma 1. Let I = (a, b) with a, b = ±∞ and let f : I 7→ C. f is continuous if and only if

f(x) = f(c) + o(1) as |x− c| → 0.

proof. f(x)− f(c) = o(1) as |x− c| → 0 ⇔ ∀ε > 0, ∃δ > 0 s.t

0 ≤ f(x)− f(c) < ε whenever |x− c| < δ.

Suppose J ⊆ I. The set C(J) := { f : f is continuous at c, ∀c ∈ J} has the following properties:
1) Linear space with a commutative algebra under multiplication.
2) Stable under composition.
3) ‖f‖∞,J = sup

x∈J
|f(x)|. Norms may take infinite values.

If K ⊂ I is compact, C(K) = BC(K) = Cb(K) where

BC(K) := { f ∈ C(J) : ‖f‖∞,J <∞}

If K is not compact then BC(J) ⊂ C(J).

BC(K) is closed under uniform convergence. This allows us to define C(J) as a Banach space
under the ∞−norm. Furthermore,

‖fg‖∞ ≤ ‖f‖∞‖g‖∞
=⇒ defines a Banach Algebra.

Definition 1. Let {fk} be a convergent sequence in C(I). We say fk → f locally uniformly if and
only if

∀x ∈ I,∃nbhd N 3 x s.t. ‖fk − f‖∞,N → 0.

FIG 1.1.
We see from Fig 1.1 that the pulse goes to the right continuously. The sequence of functions clearly

do not converge uniformly to 0 over I, however it does in a neighbourhood of x

Theorem 1. We have local uniform convergence if and only if Compactly convergent.

Definition 2. f is said to be Holder Continuous at c if and only if

f(x) = f(c) +O(|x− c|α).

When α = 1 we say f is Lipschitz continuous.

Definition 3. We define a norm by evaluating ‖f‖C0,α(J) = supx,y∈J
|f(x)−f(y)|
|x−y|α and defining its

norm:
‖f‖C0,α(J) = ‖f‖α,J + |f |C0,α(J).
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Spaces of Differentiable Functions

Examples

Ck(J) := { f ∈ CK−1(J) : f ′ ∈ C(J)}, C∞(J) :=

∞⋂
k=0

Ck(J)

Definition 4. We define a norm for k-differentiable function to be

‖f‖Ck(J) :=

k∑
j=0

‖f (j)‖∞,J .

Definition 5. A function f : Ω 7→ C, Ω ⊆ C, is said to be analytic at c ∈ Ω if and only if

(∗) f(z) =

∞∑
n=0

an(z − c)n

for |z − c| < r for some r > 0.

Theorem 2 (Convergence Thrm Power Series). For any power there exists a uniquely determined
number R with the following properties:
(a) The series converges for any z s.t |z − c| < R.
(b) The series diverges for any z s.t |z − c| > R.

proof. WriteR := sup{r ≥ 0 : supn |an|rn <∞}. Clearly if whenever |z−c| > R the series (∗) is divergent.
Consider 0 < ρ < R we have |an|ρn ≤ |an|Rn <∞ so set M = |an|ρn. Therefore

∞∑
n=0

|an||z − c|n =
∑
|an|ρn

|z − c|n

ρn
≤M

∑
(
|z − c|
ρ

)n <∞,

by geometric progression since (= |z−c|
ρ < 1 by our choice.

Cω(Ω) = { f ∈ C∞ : f analytic at every c ∈ Ω}

Suppose

an =
f (n)(c)

n!
with |an|rn ≤M,

then

|f (n)(c)| ≤ Mn!

rn
⇔ f ∈ Cω(c) = G1

M,r(c).
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